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Abstract

The Bose—Fermi recoupling of particles arising from the Z,-grading of the
irreducible representations of spin SU(2) is responsible for the Pauli exclusion
principle. We demonstrate from fundamental physical assumptions how to
extend this to gradings, other than the Z, grading, arising from other groups.
This requires non-associative recouplings where phase factors arise due to
rebracketing of states. In particular, we consider recouplings for the Zjs-
grading of SU(3) colour and demonstrate that all the recouplings graded by
triality leading to the Pauli exclusion principle demand quark state confinement.
Note that quark state confinement asserts that only ensembles of triality zero are
possible, as distinct from spatial confinement where particles are confined to a
small region of space by a confining force such as that given by the dynamics of
QCD. Finally this result is independent of any algebraic model. One is yet to
determine a non-associative field operator algebra realizing such recouplings.

PACS number: 03.50.Dc

1. Introduction

Bose—Fermi recoupling leads directly to the Pauli exclusion principle which, for example,
underlies the stability of atoms. Observational evidence shows that particles come either as
bosons or fermions. Particle statistics arise from the phases associated with the recoupling of
states. A recoupling for the representations of SU(2), where a sign change is introduced for
interchange of half integer spin and no sign change for interchange involving an integer spin,
generates symmetric boson and anti-symmetric fermion states.

In the early days of the quark model it was realized that certain fermionic particle
resonances, based on conventional reasoning, appeared to have symmetric states. An example,
given in Kaku [1], is the resonance A** composed of three up quarks of total spin % The state

must be symmetric in quark flavour and the spin % of each quark must be aligned. The state
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must also be symmetric in quark spin. Hence the overall state is symmetric, yet the resonance
is fermionic. The solution was to introduce SU(3) colour to generate anti-symmetric quark
states. Although the existence of quarks is well established, a single free quark has never been
observed. We call this quark state confinement. We distinguish this from spatial confinement
which accounts for the localization of quarks to a small region of space. The latter arises from
the dynamics of a theory such as QCD. We argue that quark state confinement is a result of
any Zs3 graded recoupling for SU(3) colour admitting Pauli exclusion of quarks. Furthermore,
we determine exactly when a generalized Bose—Fermi grading leads to state confinement.
We consider physical systems conforming to the following assumptions.

(i) The system possesses an exact symmetry given by some semi-simple group G.
(i1) Single particle state spaces are finite unitary irreducible representations of the group G.
(iii)) Composite (particle) state spaces are given by coupling together constituent single particle
state spaces using tensor product.
(iv) Recoupling of composite state spaces is a natural isomorphism.

The first three assumptions are well-established quantum axioms. The fourth assumption
perhaps needs some explanation. A recoupling is an invertible intertwiner (G-equivariant and
linear) satisfying a naturality condition. Naturality is an important idea coming from category
theory [2]. For example, given three particles with state spaces H;, H, and H3 in the
state Y1, ¥, and 3 respectively, a recoupling between the physically equivalent state spaces
(H1®H2) ®H3 and H, ® (H1 ® H3) is an invertible intertwiner Ty, 34, 14, : (H1 @Ha2) @ Hz —
Hy ® (H; ® H3) recoupling the states (¥ @ ¥2) ® 3 to something like ¥, ® (Y ® ¥3).
The natural condition satisfied is that given any individual observation or preparation of the
individual states by linear operators A; : H; — H; changing the state v; to v/, the following
diagram commutes:

(H1 ®@ Hs) ® Hs

T’H1,'H2,H3

Hy ® (H1 ® Hs)

(A1®A2)®A3 ArR(A1®A3)

TH/ Hl HI

(H} @ HY) @ Hy —————">H, @ (H] @ Hj).

Normally for SU(2) with Bose—Fermi recoupling the horizontal arrows introduce no phase
change, but as we shall see this is not the case for SU(3) colour Bose—Fermi recoupling.

There is a long history of investigation into associative recoupling, beginning with the
early work of Green [3]. Green generalized quantization of associative algebras of annihilation
and creation operators. Such generalizations led to parastatistics [4, 6, 7, 10], modular statistics
[5] and graded Lie algebras [8, 9]. These approaches work with algebras having an associative
universal embedding algebra and have been used to describe some features of the quark model.
However, this approach has not been able to explain confinement, instead arguing that its origin
is dynamical.

In this paper we do not restrict ourselves to associative recoupling. Instead we seek the
most general recoupling consistent with the physical requirements of a quantum system
exhibiting symmetry. Furthermore, we make no assumptions about the existence of a
generalized colour algebra nor attempt to explain the quark model. We simply determine
the ramifications of a Bose—Fermi recoupling for SU(3) colour. The non-associativity is
required to accommodate Bose—Fermi recouplings over a Z3-gradation. There is no physical
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reason why non-associative recouplings are not admissible. In fact the statistical consequence
is quark state confinement without taking dynamics into consideration. These results were
announced in Joyce [11].

A symmetric monoidal structure of the category of unitary representations provides a
framework for describing recoupling, and the Racah—Wigner calculus. We refer the reader
elsewhere for an introduction to category theory, group representation theory and the Racah—
Wigner calculus. The book by Mac Lane [2] is the standard reference on category theory. An
introduction to braided monoidal categories in the context of quantum groups are Kassel [23]
and Majid [24]. The group representation notation used in this paper is based on Brocker and
tom Dieck [12]. A gentle introduction to a category theoretic formulation of the Racah—Wigner
calculus is given in Joyce et al [22] and for coupling theory Joyce [14]. Although category
theory is the best language to describe recoupling, we trust that much of the paper is accesszble
through examples, and the usage of non-categorical language whenever it is feasible to do so.

We demonstrate in this paper that a Bose—Fermi colour recoupling is neither a symmetric
monoidal nor a braided monoidal structure. Colour recoupling requires a symmetric
premonoidal structure as defined in Joyce [15, 16]. A symmetric premonoidal structure
introduces a natural automorphism to account for the non-commutativity of the pentagon
diagram. Hence recouplings based on symmetric premonoidal structures are necessary and
lead to a deformation/generalization of the usual Racah—Wigner calculus. This calculus
together with appropriate diagram notation is developed in a series of papers [17-21].

2. Recoupling and statistics

The collection of unitary representations for a group G is a symmetric monoidal category
URep,;. Loosely it is equipped with a tensor product and recoupling structure. Let Irrg
denote a collection of isotypical irreducible representations (or irreps). Suppose that G is
semisimple so that every representation is decomposable as a direct sum of elements from
Irrg. A one-particle ket state of the system is the mapping

ly):C—> ) ()]

given by z > zy where z € C, A € Irrg, the parentheses are the restriction functor Res®
taking A — (L) = Res“A = C™ and ¥ € (A). One should think of (1) as the state space
of the particle described by the irrep A. For example, the spin half irreps state space is two
dimensional and spanned by basis vectors corresponding to spin up and spin down along an
axis. Multi-particle states are formed by ‘tensoring’ single particle states together. The irreps,
under tensor product, generate the (projected) Racah—Wigner category mRW . This category
inherits the symmetric monoidal structure of URep,;.

Multi-particle states are built out of single particle states, the state space being given by
the tensor product of the single particle states. Given n particles contained in n irreps, the
state space representing this multi-particle system is dependent on the order and bracketing
of irreps. A particular choice is called an ensemble. We abuse notation and call each irrep a
particle. The natural isomorphisms of the symmetric monoidal structure reorder and rebracket
ensembles. The order in which the n irreps are coupled is represented by a rooted planar
binary tree with labelled leaves. This is called a bracketing tree, see Joyce [14]. Operations
between bracketing trees are called recouplings.

The recoupling between ensembles is given by the symmetric monoidal structure of
mRW¢. That is, by associativity (a), commutativity (¢) and left and right identity (I and t)
natural isomorphisms, where we denote the identity irrep by e. These determine respectively,
natural isomorphisms
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Aape: (@®D)®c—>a®(b®c) )
CGwp:a®b—>b®a (3)
lLbie®a—a (@)
Lia®e—a ©)

representing rebracketing, adjacent transposition and removal of the vacuum from the left or
right. Given any two couplings of a set of irreps, there are a number of differing sequences
of the above elementary recouplings transforming one into the other. If these two sequences
compose to always give the same natural isomorphism, we say that the structure is coherent.
The Mac Lane coherence theorem [2, 25] asserts that a necessary and sufficient condition for
coherence is that the pentagon, hexagon and triangle diagrams commute and that commutativity
is symmetric. The symmetry of commutativity asserts ¢, , = c;}] The pentagon diagram is

a®b,c,d a,b,c®d

(a®bh)@c)@d—>@Rb)®(c®d) ——a® (b® (c®d))
a,b,c®la 1a® b,c,d

(a®@(b®c)®d

a® ((b®c)®d).

a,b®c,d
The hexagon diagram is

a,b®c

(a@b)@c—""5a@(b®c) —=5(bc)®a
a,b®1c b,c,a

b®a)@c—">b0(@®c) T=—bR (c®a).

Lastly, the triangle diagram is

(a®e)®b el a® (e®b)
m/‘ %

a®b

We require the states of any composite system to be compatible with the recoupling
structure. That is, given a state |¢/) : C — (a) and an automorphic recoupling i : a — a, the
following diagram is commutative.

() 2 (a)

”’J A>

C

where 7 is the permutation of particles givenbyiand 7, (a; ® - - - ®@ ay) =z @ - - ® dyy.
The map i : a — a represents the recoupling of identical particles by permuting amongst
themselves their order in the ensemble a. Alternatively, given any map |¢) : C — (a), a state
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of the system is given by

D O) (6)

where we sum over all recouplings i : @ — a. If all the particle labels of a are distinct then
the only recoupling is the identity.

We define an equivalence on the set of ensembles given by a ~ b if and only if there is
an ensemble ¢ such that a and b are contained in the direct sum decomposition of ¢ (written
a,b C c). In other words the ensemble ¢ may interact in some way to become either
a or b (ignoring dynamical and kinematic considerations). The set of equivalence classes
[a] = {b : a ~ b} forms an Abelian group A with addition [a] + [b] = [a ® b] and identity
0 = [e]. The inverse of [a] is given by —[a] = [a*] since e C a ® a*. To give some examples,
ifG=8SUmn)(n>2)thenA =27, IfG=C,andn > 1 then A =7Z,,. If G =SO02n+1)
then A = Z,. If G = D,, where n > 2, or G is the tetrahedral, octahedral or icoshedral group
then A = Z,.

The natural square property of the recouplings mapped under the restriction functor is
required to be natural at the state level. This allows us to conclude that the recouplings are of
the form

Aa,,c((@; @ b)) @ cr) = o, pai ® (b; & ck) @)
Cap(@ ®bj) = Ymanb; ® a; (8)
la(e ® a;) = Ana; )
t.(a; ® €) = pmai (10)

where m = [a],n = [b], p = [c], {a;}; is a basis for a, {b;}; is a basis for b and {cy}; is a
basis for ¢ (see the Appendix for details). All factors &, », > Vin,n» Am and p,, are phases. The
pentagon, hexagon, symmetry and triangle conditions place the following constraints on the
phases:

Xmtn, p,g%m,n,p+q = %m,n,pUm,n+p,q%n, p.q (11)
Xnn, pYmn+pn,pom = Ymn%,m,pVm,p (12)
YmanVnm = 1 (13)
A, 0,nhn = Pm- (14)

Any choice of phase factors satisfying these conditions defines a recoupling. We give the
following examples:

(i) We have the (pure) Bose recoupling where all phases are unity. If A = Z; the only
recoupling is a Bose recoupling.

(ii) If A = Z, the Bose—Fermi recoupling is given by y;,; = —1 with all other phases must
be unity. Compatibility of states with this recoupling leads to symmetric states for bosons
(even grade) and anti-symmetric states for fermions (odd grade). From this follows the
Pauli exclusion principle.

(iii) If A = Z, then by the hexagon condition (12) associative recouplings satisfy y,,p 4 =
Ym.qVp.q- The general solution is easily found by induction to be y,, = (y1,1)7.
The symmetry condition (13) gives y;;; = £1. Hence there are only two associative
recouplings. Given an A-graded associative algebra A = @,,ca A, One may construct the
bracket

[a,b] =ab — ymnba (15)
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satisfying [b, a] = —y,.mla, b] where a € A, and b € A,. This bracket satisfies the

Jacobi identity [a, [b, c]] = [[a, b], c] + Vumlb, [a, c]] where ¢ € A,. The algebra A

with this bracket is a Lie algebra for y; | = 1 and a graded Lie algebra for y; ; = —1.
(iv) If we have recouplings ., p, Vim.n, Am and p, for m,n, p € A, and a,’n,’n,’p,, y,;l/’n,, A
and p,, for m’,n’, p' € A’ then the point-wise product e n p&, v s Vinn Vi s 2
and p, p), is a recoupling for A x A’.

An extension of graded Lie algebras utilizing the recoupling phase algebra here is given in
Joyce [26].

In QCD one would like to introduce SU(3) colour and require that it carries a Bose—Fermi
recoupling. However, A = Zj3 obstructs the recoupling from being a symmetric or braided

monoidal structure. Let 1 be the class containing the SU(3) representation [3] and 2 its dual [3].

We require y;,; = y»2.2 = —1. A symmetric monoidal recoupling requires y» » = 1 as we now
show. The hexagon condition (12) withm = n = p = 1 gives o 1,1V12001,1.1 = Vﬁla1,1,1.
Thus the symmetry condition (13) implies y» 1 = «j1,;. This together with the hexagon
condition (12) withm = 2 andn = p = 1 gives
2
yro = L1 (16)
02,1,101,1,2

But the pentagon condition (11) withm = n = p = g = 1 implies that ,, = 1. Hence
the colour recoupling cannot be a symmetric monoidal recoupling. Even though such a
recoupling may be non-associative, it is too restrictive. Two possibilities exist: a braided
monoidal recoupling (see Joyal and Street [13]) and a symmetric premonoidal recoupling
(see Joyce [15, 16]). However, the braided monoidal recoupling cannot describe the colour
recoupling because the second hexagon equation with m = n = p = 1 and the requirement
V12,1 = 1 show y;2 = ;1,1 But from the first hexagon we have szl = ay,1,1. Thus
¥i, = @i, = 1. Similarly one deduces that y;, = &3,, = 1. Importantly, pentagon
condition (11) above shows that y» » = 1. There is, however, an important reason why a braid
must be symmetric. If we apply commutative recoupling twice to a state |{) : C — (a®b) we
see that [Y) = V.4 Va.»|¥) Which only admits non-trivial solutions when symmetry condition
(13) holds. Only a symmetric premonoidal recoupling is capable of describing a colour
recoupling as we demonstrate in the next section.

3. Symmetric premonoidal recoupling

We begin by carefully revisiting the notion of coupling. A coupling tree is a rooted planar
binary tree with a linear ordering of its vertices such that every shortest path from the root
to a leaf is an increasing sequence and a linear ordering of its leaves. An example is given
in figure 1. One should note that the level of the vertices in the tree determines the coupling
hierarchy. In this example the coupling sequence is represented by the linear ordering 1324
given by reading the regions from left to right. An ensemble tree is given by evaluation by
irrep labels. Given a tuple of labels, we label the leaf in the ith position of the linear ordering
by the labelled /;. The recouplings are represented by unique arrows between coupling
trees characterized by a pair of permutations. Note that many coupling trees evaluate to
the same ensemble tree. The canonical functor can maps ensemble trees to ensembles and
recouplings to natural isomorphisms in the obvious way. An example is given in figure 2. The
ensemble tree represents physically distinct coupling scenarios that take into account particle
indistinguishability. The coupling trees serve to distinguish recouplings and the ensembles are
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1) couple 4 to 1

2) couple 3to 5

3) couple 3.5 to 4.1

4) couple 2 to (3.5).(4.1)

Figure 1. An example of a coupling tree.

2 ba ¢ da
eval can
— = \W — = ((bac))d)a

(0,1)| =((1243),(13)(254)) (6.m)(a,a,b.c,d) can (0,m)(a,a,b,c.d)

a b a ¢

eval
W A a((b(ac))d)

Figure 2. An example of the recoupling o between two coupling trees, their evaluation by
(a,a, b, c,d) to ensemble trees and subsequent mapping under can to ensembles.

the state spaces. The permutation o permutes the coupling sequence, and the permutation
permutes the order of the particles. For a comprehensive exposition see Joyce [16, 17].

We introduce a deformativity natural automorphism ¢ to represent the non-commutativity
of the pentagon diagram. This is depicted in figure 3. Thus for example, in the ensemble
(a ®b) ® (c ®d) we distinguish between coupling a to b before, as opposed to after, coupling
c to d. The functor can is coherent if the hexagon diagram and triangle diagrams commute,
and the following three diagrams commute.

(e®@a)@b—"  se®(a®b) (a@b)@e—"" s5a@(b®e)
a®b a®b

(a®b)® (c®d) —2% (a®b) ® (c® d)

a®b,c®d a®b,c®d

9e.d,a,b

(c®d)®@(@Rb)«———(c®d) @ (a®b).
The deformativity recoupling is given by (see the appendix)
q((a; ®bj) ® (ck ®d)) = Eup.calai @bj) ® (cx ® dp) (I7)
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(5
~

a b c¢c d a b ¢ d
a b ¢ d a b ¢ d
%

Figure 3. The g-pentagon diagram of a premonoidal structure, where g represents the degree to
which the pentagon diagram does not commute.

where &, ;, ¢ 4 15 a phase factor and a class function of the A-gradation. The constraints on the
recoupling phases are

Clntn, p.g&mn,p.qOm.n, p+q = Qm.n, pOmn+p.g%n, p.q (18)
U, p Ym,n+p®n,pm = Ym,nOn,m,p¥Ym,p (19)
Emn.p.q&p.gmn =1 (20)
YinVum = 1 (21)
Q0. m.nAmin = Am (22)
Um,0.nhn = Pm (23)
®Um.n.00n = Pumn (24)

for all m,n, p,g € A. Note that (18) provides a formula for &,,, ,,. Let Sl={zeC:
|z| = 1} C C be the set of phase factors. We now give a formal definition of a recoupling for
an Abelian group A.

Definition 1. A recoupling for an Abelian group A consists of the four maps o : A> — S', y
A’ Stand i, p: A — S! satisfying conditions (18)—(24).

A recoupling is called a Bose—Fermi recoupling whenever y,, , = —1 forallm € A\ {0}. We
can define a Bose—Fermi recoupling for any A-gradation as follows. We take A,, = p, = 1
and

1 m=0orn=0

-1 otherwise
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am,n,pz{l m=0,n=0p=0orm+n=0 o6

-1 otherwise.

The m +n = 0 in the definition of ¢, , , may equally well be replaced by n + p = 0. These
determine the deformativity phases to be

m=0,n=0,p=0,g=0,m+n=00rp+g =0

otherwise. @7

1
‘i:m,n,p,q = { _1

We immediately see that the recoupling is monoidal for A = Z,, but premonoidal for A = 7Z,
where n > 3. To verify the phase conditions we only need to demonstrate that hexagon
condition (19) holds and that the definition of &,,, ,, is correct, the other conditions are
immediate. If m = 0, n = Oor p = 0, this is easily shown. Suppose they are all non-zero, then
YmanVm,p = 1. If n + p = 0 then the hexagon condition reduces t0 o, ,—p O, —n.m = U m,—n

which holds. Now also suppose that n + p # 0 then y,, ,+, = —1 and the hexagon condition
1S Qo p@n, pm = —0ly m, p Which holds. A similar argument shows the definition of &, ,, , 4 is
correct.

For this Z3-graded Bose—Fermi recoupling all phases are unity except the following which
are —1:

Y11 o1,1,1 ISRRR
Y12 a2 E112,2
(28)
V2.1 2,1 &011
V2.2 222 £000.

4. Exclusion and confinement principles

Given an ensemble of particles, sometimes there are a number of coupling schemes associated
with it. This occurs when there are identical particles, or when the coupling process is
non-monoidal. These situations lead respectively, to exclusion and confinement principles.

Indistinguishability requirements place statistical constraints on what states of a given
system are possible. Given an ensemble tree w, the state space of the system is H = (can w).
Thus a map |¢) : C — H is a state of the system if it is compatible with the two following
conditions.

(i) Indistinguishability of particles: given ensemble trees w and w’ with the same state space
H, |¥) : C — H is a state of the system if for every recoupling (o, 7) : w — w' the
diagram below commutes.

(Cal’l(a,ﬂ'))H

H
wﬂ )
C

where 7, (a1 ® - - R a,) = dy1 Q -+ Q dyp.
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i+l i i+l

G ) S
_— = . _—
{i+1)
i+l i i+l i
Gl 6‘; 0'_111
-_— - - - -

Figure 4. Transposition of two adjacent particles.

(ii) Composition of particles: given two states [') : CH — H and |¢') : C — H the
composite |W) : C — H ® H' given by the commuting of the diagram below is a state
(and so satisfies (1)).

o2 OB o
A

)
C

where Az = (z, z) for all z € C is the diagonal map.

Note that if the recoupling is symmetric monoidal then property (ii) follows from (i).
The next result deduces the generalization of the Pauli exclusion principle.

Principle 1 (Exclusion). Given an ensemble of identical particles a, the Bose—Fermi
recoupling asserts that the state is symmetric if a € 0 and anti-symmetric otherwise.

This justifies the name of the recoupling and is the Pauli exclusion principle for G = SU(2).

Proof. Given any coupling tree w we wish to determine a sequence of associativity and one
commutativity recouplings, the interchange of the ith and (i + 1)th leaf. To do this determine
a sequence of associativity recouplings that ensures the ith and (i + 1)th leafs are coupled
together first in the coupling tree. Next apply the commutativity recoupling swapping them,
and finally reverse the sequence of associativity recouplings to give a coupling tree w’ that
only differs from w by the interchange of the ith and (i + 1)th leaves. This is depicted in
figure 4. Next evaluate these trees for a fixed label a. They give rise to the same ensemble
tree, and under can the same ensemble. The recoupling phase is given by y, , since all the
associativity recoupling phases must cancel by construction. Thus any state under adjacent
interchange introduces a phase factor y, ,. Hence by indistinguishability a state of the system
is symmetric if y, , = 1 and anti-symmetric for y, , = —1. O

We now deduce the principle of state confinement.
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Principle 2 (Confinement). Given a Bose—Fermi recoupling, there is a nilpotent n of A (that
is 2n = 0) such that the non-zero states correspond to ensembles of grade zero and n.

If A has no non-zero nilpotent grades, the non-zero states are confined to grade zero ensembles.
This is the situation for SU(3) colour giving quark state confinement.

Proof. We begin by proving that
gm,n,m,n = Ym+n,m+nYm.m¥Vn,n- (29)

Hexagon condition (19) gives tprn.m.n®m.n.men = %m.m+n.n Vi+n.mn Vm+n.m Ym+n.n - SUbstituting
this into formula (18) for ‘i:m,n,m,n giVeS sm,n,m,n = Um,n.m%,m,n Ym+m,m+n Ym,m+nVn,m+n - Again
hexagon condition (19) gives oy nm = Vim.nVim.m Vm+n.m» and a similar formula with m and
n interchanged. Substituting these into the previous expression gives the desired formula.
If a corresponds to an ensemble for which its grade [a] = m does not generate Z; or Z,
then &, u.mm = Yomo2m = —1. Now the composition of state property applied to a state
) : C — (a) gives the 4-fold composite state |¥) : C — ((¢ ® b) ® (a ® b)) satisfying
|¥) = &y nmn|¥). This canonly occurif |¢/) = 0. The ensembles admitting non-trivial states
generate an Abelian subgroup A of grades m, n satisfying m + n = 0 because if m +n # 0
either m or n would admit only trivial states. Hence Ay is Z; or Z, giving the desired nilpotent.
Either way the deformativity phase is always zero. U

For SU(2), which is Z,-graded, one arrives at the conclusion that the only non-unity
phase possible is y; ;. Moreover, the recouplings are symmetric monoidal and there is only
one choice of Bose—Fermi recoupling (y1,; = —1). Thus Pauli exclusion follows and there
is no state confinement requirement. On the other hand for SU(3), which is Z3-graded, there
are a number of Bose—Fermi recouplings. Importantly, they are all symmetric premonoidal
(never monoidal), satisfy Pauli exclusion and because of state confinement only triality zero
states are possible.

The only remaining Z,-grade admitting the state confinement observed in nature is Zg.
This could be aligned with SU(6) flavour. However, since each quark flavour has a different
mass there is no reason to believe that a flavour indistinguishability principle exists. Moreover,
SU(2) spin and SU(3) colour are sufficient to describe the statistical behaviour observed in
nature.

In standard QFT the associativity is strict and brackets are ignored. In other words all
O, p are unity. In the case of QCD some modification of the recoupling structure is required
if confinement is to become an intrinsic property. The only irreducible physical ensembles are
the vacuum, mesons, hadrons and free gluons. Gluons are free to enter and exit mesons and
hadrons providing the mechanism of the strong interaction. It is important to realise that one
cannot have the Pauli exclusion principle for SU(3) colour without the confinement of quarks
to mesonic and hadronic ensembles. A formulation of many-body quantum theory taking this
into account is given in Joyce [21]. This approach does not rely on annihilation and creation
operators. It is an open question as to what form non-associative algebras of annihilation
and creation operators might take to accommodate non-associative recoupling. A promising
candidate is the extension of graded Lie algebras given in Joyce [26].

5. Conclusion

Starting from fundamental principles we derived the recoupling structure of ensemble quantum
systems with exact symmetry. This was found to lead to a recoupling algebra of phases. The
symmetry of the situation leads to a gradation for the ensembles of which the recoupling is
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a class function. There is some freedom in the choice of phases, each leading to different
statistical behaviour.

Physical requirements demand the usual Bose—Fermi recoupling over SU(2) spin and
SU(3) colour. In order to accommodate this for SU(3) colour we deduced the need for non-
associative recoupling. More generally we constructed a consistent Bose—Fermi recoupling
for any gradation. The recoupling algebra placed constraints on what states of the system are
allowable. For Bose—Fermi recoupling we demonstrated that a (generalized) Pauli exclusion
principle holds. Additionally we proved that a state confinement principle was unavoidable.
The triality grading of SU(3) colour ensembles ensured that quark state confinement was
mandatory. No confining force was necessary to explain quark state confinement. However,
spatial confinement of quarks to within baryons is explained by the dynamics of a theory such
as QCD.
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Appendix

The natural square property of the recouplings mapped under the restriction functor is required
to be natural at the state level. Considering commutativity this natural condition is as follows:
givena = ¢ and b = d then

( a,b)

(@) ® (b) —= (b) @ (a)

X®YJ/ J/Y@X
( c d)

(¢) ® (d) —=(d) ® (c)
commutes for all linear transformations X : (a) — (c¢) and Y : (b) — (d). Suppose
(cap)ai ® bj = (Cap)ijbr ® ax (30)

where {a;}; is a basis for a and {b;}; is a basis for b. Takec = a,d =b, X = X(i; k) : a,
aidiy and Y = Y (j; 1) : by = b8 in the square diagram and apply the maps to the basis
vector a; @ b;. The top right half gives

a; ®bj > Y (Cap)"bn ® am > (Cap)iibr ® a. 31)

And the bottom left half gives

a; ®bj > ay @by > Y (Cap)iibs ® ay. (32)

r,s

These two being equal allows us to conclude that (C, ;);] = ;6] (Ca,;,);j and hence ¢, can
only introduce a global phase factor (C,5)!1. Moreover, if a = ¢ and b = d then ¢, , and c. 4
introduce the same phase which we denote by y(4],»). Thatis to say the commutativity phase is
A-graded. Similar arguments allow us to conclude that all recouplings contribute only phase
factors.
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